Local well-posedness of the Anderson-Gross-Pitaevskii equation
1 : Centre de Mathématiques Appliquées de l'Ecole polytechnique
Institut National de Recherche en Informatique et en Automatique, Ecole Polytechnique, Centre National de la Recherche Scientifique
In this talk I will present the construction of confining Anderson operators on R^2, that is Schrödinger operators with both a confining potential and a multiplicative spatial white noise. I will then explain how a paracontrolled approach of the operator allows to derive Strichartz estimates for the associated propagator. With Strichartz estimates at hand, I will outline the proof of the local wellposedness of the Anderson-Gross-Pitaevskii equation.